
The Intel® Atom™ Processor, with multithreading

and virtualization, delivers x86 performance,

minimizes power consumption and heat

dissipation, eliminating the need for fans or heat-

sink, and brings powerful new technology to

battery operated, space constrained embedded

applications. To take advantage of the all the

benefits offered and migrate through numerous

product options, designers must understand

intricacies involved in hardware, software, and

end delivery to select the right Intel® Atom™

Processor -based solution for their embedded

devices.

D I G I TA L T E C H N O L O G I E S F O R A B E T T E R W O R L D

w w w . e u r o t e c h . c o m

Whitepaper

By: Jamey Dobbins

Abstract

Optimizing Embedded Designs
for the Intel Atom™ Processor®



Compelling low power and higher performance

embedded systems can now be realized by

leveraging the advanced architecture and managed

power characteristics of the IA-32 based Intel®

Atom™ Processor. Performance computing features

traditionally reserved for desktop and server class

systems are now available for well optimized

embedded systems and, if properly implemented,

can be achieved in concert with low power

operation. These features include: multithreading,

Intel® Hyper-Threading Technology, virtualization,

high level macro ops and advanced SSE3 math

dedicated functions. In addition to these features,

the Intel® Atom™ Processor can deliver

sophisticated dynamic power management. This

paper and presentation will outline how these

performance capabilities coupled with advanced

power managed system architecture can be

productively employed for optimized embedded

systems.

Introduction

2

What is multithreading and how can it be used to

optimize embedded applications? In the computer

world, multithreading is the task of creating a new

thread of execution within an existing process rather

than starting a new process to begin a function.

Essentially, the task of multithreading is intended to

make wiser use of computer resources by allowing

those already in use to be simultaneously utilized by a

slight variant of the same process.

How does this differ from multitasking one might

ask? In multitasking, a separate process is spawned

or forked off of the original process and the forked

process has a completely separate address space and

process id. Threads on the other hand share the

same address space and process id as the process

that created them. Creation of threads requires less

Multithreading and Intel

Hyper-Threading Technology

®

overhead, as measured in machine time, than the

forking off of an entirely new process. Threads have

an advantage over processes by sharing file handles.

A file opened in the main process can share this

handle with all of the threads it created.

Communication between threads is also much easier

than inter-process communication.

The key to optimize applications whether embedded

or not is to promote parallelism which is the

simultaneous processing of different data or tasks.

Parallelism is achieved through two models: “data”

and “functional” decomposition. As the names imply,

these two models represent very different methods

of applying multiple threads to achieve a higher level

of performance within a single process. Data

decomposition is where the same independent

operation is applied to different sets of data.

Functional decomposition means performing

independent work on asynchronous threads.

Examples of data decomposition would be

mathematical algorithms like matrix multiplication

that could split the row times column computation

into ‘N’ threads each computing a different columns

output. Applications such as a client-server

communication, advanced 2D/3D graphic rendering

with many characters or independent entities in the

visible scene, complex HMI’s, or playing a video lend

themselves to functional decomposition. In the

client-server model a new thread is created for each

client that communicates with the server. A graphics

display application could use a different thread to

control the actions of each entity or rendering layer

on the screen. When executing playback of a video,

threads are used to handle the audio, read data from

the disk, and play the video.

Parallelism



3

Low power embedded applications, typically in the past,

ran on small RISC-based or low end x86 systems with

little or no multithreading exploited to help improve

performance. Newer technology like Intel’s Atom™,

which is architected for Intel® Hyper-Threading

Technology, can perform operations very efficiently. All

of this performance, coupled with low power operation

of only 2-3 watts for an entire Compute-On-Module,

make embedded multithreading a very viable solution for

system optimization. Introducing parallelism into

embedded applications can now reap higher

performance when coupled with hardware that is geared

toward this parallel computing. Keep an eye on multi-

core technology processors also, which are anticipated to

be moving rapidly towards the embedded systems

market with low power architectures. Embedded

systems and applications designed with parallelism can

quickly adopt and exploit the performance of future

generation multi-core processors.

Threads can run concurrently on multi-processor or

multi-core hardware, yielding higher performance and

increased system responsiveness. Multithreading is best

suited for this type of system. Threads can, however,

run on uni-processor cores and uni-processor machines.

This is achieved by a “slight of hand trick” called time-

slicing. Each thread is scheduled to run on the

processor for a given amount of time called a time-slice.

The operating systems scheduler is responsible for when

and how long each thread of execution is allowed to run

on the processor. There are different algorithms utilized

for the scheduler that try to optimize the usage of each

thread or process while also attempting to achieve a

good level of system responsiveness.

You have probably heard the term “Hyper-threading”

and wondered, what is this? Hyper-threading or

“simultaneous multithreading” is a term coined by

Intel®. Intel's technology essentially enables the

operating system to behave as though it is controlling

two processors, allowing two threads to be run in

parallel, both on separate 'logical' processors within

the same physical processor. The operating system

effectively sees two processors through a mix of

shared, replicated and partitioned chip resources,

such as registers, math units and cache memory.

Intel® Hyper-Threading Technology can significantly

improve performance on a supported processor by

keeping the processor execution pipelines and

resources busy and minimizing idle cycles. See

diagram below:

Multi-core

Intel Hyper-Threading Technology®

Multiprocessor Hyperthreading

Processor

Execution

Resources

Where AS = architectural state (eax, ebx, control registers, etc.)

Processor

Execution

Resources

Processor

Execution

Resources

AS AS AS

Application 1 Application 2

CPU

Application n

AS

Figure 1- Intel® Hyper-Threading Technology

Figure 2- Multi-tasking

Virtualization technology allows a CPU to behave as if

it were several CPUs working parallel, enabling

several operating systems to run at the same on the

same machine.

: a multi-tasking

system has one operating system with several

programs running in parallel:

Virtualization is not multi-tasking

Virtualization

Operating System



4

Virtualization technology is not new in the computing

industry; however, it’s viability for use in low power

embedded systems has been significantly moved

forward by the architecture of Intel® Atom™

processor. There are numerous software packages

available today that enable virtualization through

software control of access to the physical hardware of

the machine. Among these are VMware*, Microsoft*

Virtual PC, and many others. There are three types

of virtualization:

Both paravirtualization and full virtualization incur

large performance overhead, consumed machine

time, due to fact that software must emulate non-

virtualizable instructions. For low power embedded

systems every clock cycle counts – for overall system

performance and power consumption.

Paravirtualization

Full virtualization

is where the guest operating

system is recompiled to use calls into the virtual

machine software to emulate non-virtualizable

instructions. This presents problems where the

operating system source code is not available.

relies on software runtime

binary translation to trap and virtualize the

execution of non-virtualizable instructions. With

this approach, the operating system code does

not need to change as critical instructions are

discovered and redirected with traps into

software emulation routines.

Hardware-assisted virtualization moves the

handling of non-virtualizable instructions into the

processor hardware, and adds new instructions

to the instruction set to control virtualization.

This greatly simplifies the virtual machine

software, and allows the guest operating systems

to run with higher performance and greater

power efficiency.

Application 1

App 1

App 1

App 1

App 1

Application 2

App 2

App 2

App 2

App 2

CPU 1

CPU 1

CPU 1 CPU 2 CPU 1 CPU 2

Virtual CPU

Virtual CPU

Physical CPU

CPU 2

CPU 2

Virtual CPU

Virtual CPU

Application n

App n

App n

App n

App n

Figure 3- Hyper-threading

Figure 4- Virtualization

Figure 5- Virtualization with Hyper-Threading

Operating System

Operating System 1

Operating System 1

Operating System 2

Operating System 2

Virtualization is not hyper-threading: a hyper-threaded

system simulates two CPUs for each physical CPU, allowing

for balancing of performance of a single operating system

using SMP (Symmetric Multi-Processing), and these two

CPUs cannot be used totally independently of each other:

On a system with virtualization, there are two (or more)

independent operating systems running in parallel on its

own “virtual CPU” or “virtual machine”, with each operating

system able to run multiple programs:

If a system has both hyper-threading and virtualization, each

virtual CPU will appear to the operating system as if two CPUs

are available on the system for symmetric multi-processing:



5

Virtualization is typically considered a feature in

server implementations – so, what does

virtualization bring to the low power embedded

system world? Here are four potential applications:

The Intel® Atom™ Processor represents a new

generation of low-power IA-32 based Intel®

processors and while it is compatible with IA-32

compiled code, there are new micro architecture

features which can be additionally exploited with

optimization in application code compilation. There

are three general categories of compiler

optimizations for the Intel® Atom™ Processor: in-

order execution, new or preferable instructions

added to the instruction set, and advanced features

like SSE3 instructions and the big-endianness support.

Optimizations can be achieved using the Intel® C++

Compiler, versions 10.1 and 11.0 where the same

techniques can be employed to generate code for

both Microsoft Windows and Linux software stacks.

This tool is a highly optimizing compiler for Intel®

architecture and compatible processor technologies.

It can be installed into an existing Microsoft Visual

Studio* build environment or into an existing GNU*

GCC installation. The compile optimizations for Intel®

Atom™ Processor are enabled with the following

switch settings:

The most general difference in architecture to other

Intel® processors is the in-order instruction scheduler.

The scheduler feeds the instruction pipeline in exactly

the order in which instructions are fed to it by the

binary code of application. There is no instruction re-

ordering done in the processor hardware. While the

scheduler is much more power efficient than in other

processors, there can be sensitivities to instruction

latency and dependency stalls resulting from poor

Embedded Applications for

Virtualization

Compiler Optimizations

4Multiple applications written for different

operating systems running on the same hardware

at the same time - eliminates costly and timely

porting of existing solutions and provides quicker

time-to-market for systems involving legacy

applications.

Failure containment and high reliability

applications – failure of one application or

operating system will not halt or corrupt the whole

machine. This is a key characteristic of many

mission critical and 24/7 usage embedded systems.

Remote access management or sideband system

diagnosis and hardware monitoring – allows for

continuous, tightly controlled, and fully “aware”

runtime management of system.

Operating system and application security from

communication networks – second virtual machine

can control access to the network and host any

antivirus or network security applications

independent of the main application virtual

machine.

Multi-level secure data management – as

embedded systems evolve from standalone

compute or control devices into fully networked

environments such as financial, medical, military,

and security systems, the requirements for secure

data processing are rapidly increasing.

Intel® C++ Compiler 10.1

–xL (Linux*) or /QxL (Windows*)

Intel® C++ Compiler 11.0 adds also the

–xSSE3_ATOM (Linux*) or /QxSSE3_ATOM (Windows*)



6

Instruction flow optimization to avoid dependency

stalls can also be accomplished with careful use of

microcode or atomic instructions. The Intel® Atom™

Processor also supports byte-wise multiplication and

division. Using byte-wide operations wherever the

full width of integer operation is not required will

promote parallelism and more efficient use of

registers.

Embedded systems, especially storage and

networking applications, often have many peripheral

devices which require direct interface. One feature

of the Intel® Atom™ Processor which can be very

useful in support of the different peripheral devices

of different “endianess“ is the MOVBE instruction

which allows swapping of the low and high bits of a

long value during the move operation. This

instruction can also be used in arithmetic

transformations. The Intel® C++ Compiler with

–xSSE3_ATOM compile option enabled will

automatically utilize the MOVBE instruction unless

explicitly disabled via additional switch.

The SSE3 Instruction for Single Instruction Multiple

Data execution for loop structures provides

parallelizing execution of the loops and can

significantly improve the execution flow of

computational algorithms. This vectorization

optimization is particularly useful in multimedia

applications and large data streams often associated

with graphics, gaming or encryption.

Additionally, there are higher level optimizations

which are performed in multi-step process. Often

the optimizations applied are unique to either the

targeted processor architecture or the source code

construction. Two of these optimization processes

are the interprocedural optimization and profile-

guided optimization. Care should be taken when

using the compiler switches that enable these

functions as there are implications for the size of

resulting code files and the object file linking

process.

scheduling by the source compiler. An example of

ordering dependency stall:

Result of compiler re-ordering to eliminate

dependency stall:

Another optimization point for the compiler is

associated with memory access address generation.

In order to minimize latencies, the compiler will

output code targeted to speed the execution of

generating and handing over memory access

addresses. This is accomplished by using the LEA

assembly instruction instead of EAX instruction so as

to minimize memory accesses during the address

generation phase and thereby minimizing the

associated access latency. Example of memory

access address generation:

Figure 6- Ordering Dependency Stall

Figure 7- Re-ordered, No Dependency Stall

Figure 8- LEA Instruction Usage



The Intel® Atom™ Processor is architected with advanced

power management capabilities. For the low power

embedded systems market, when coupled with the Intel®

companion system controller hub, US15W, it represents an

excellent example of a highly integrated and yet dynamically

power managed platform. Below are some of the key

power management features of this combined platform

which can be enabled with advanced firmware and

operating system components:

System Power Management

with Intel Atom™ Processor®

Also, there is potential for significant differences in power

management functionality provided by system BIOS,

embedded controller architectures and OS level drivers and

configuration. Care should be taken when selecting a COM

or system provided for Intel® Atom™ Processor in order to

achieve the best combination of user control over system

power and performance trade-off.

When selecting an Intel® Atom™ Processor computer

module to build your low power embedded system, it is

critical to consider the power management and

demonstrated operational characteristics of the computer

module design. While there may be many offerings with

basic functionality, the difference in real world application

performance and particularly power management can vary

widely.

For example, while an advanced COM using Intel® Atom™

Processor may be capable of running full Linux operating

system with 1GB DDR2 memory and process 720p HD

video at 3W or less, total COM power consumption, others

may consume more than 6W to accomplish the same task.

This is often due to the unique operating points and

dynamic nature of the core logic power rails and sub-

system power management.

Copyright ©, Eurotech, Inc, 2009.

All Rights Reserved. This document may not be used for

commercial gain without permission of Eurotech, Inc. Any

trademarks used within are the property of their respective

owners. This document contains technical descriptions that may

not be representative of Eurotech product or services.

The Intel® Atom™ Processor offers exciting new

performance opportunities for embedded systems

with a computing efficiency and level of optimization

not available prior to this new generation of low

power IA-32 based Intel® processors. Utilizing new

performance techniques such as application

processing parallelism thru multithreading and Intel®

Hyper-Threading Technology, designers can create

highly efficient and feature rich applications.

System architectures employing efficient hardware

accelerated virtualization can now extend to the

small form factor and low power devices, helping to

create more highly reliable and secure computing

environments and bringing forward legacy

applications. Finally, optimized software applications

for the Intel® Atom™ Processor need to be mated

with reliable and power efficient computer modules

or systems to gain the greatest leverage from this

new technology and bring new heights of advanced

computing to low power embedded system solutions.

Summary

D I G I TA L T E C H N O L O G I E S F O R A B E T T E R W O R L D

w w w . e u r o t e c h . c o m

Dynamic clock stepping and sub-system power down

Power rail voltage stepping for processor core power

Dynamic processor cache re-sizing and set associativity

management

Advanced processor “state” management including new

ultra low power state with fast resume capability

Dynamic I/O port enumeration, power up/down and re-

enumeration

Integrated thermal sensing and management hardware


