
New low power x86 Silicon is now available, so

Windows Embedded Standard (WES) properly

configured can be productively employed for

battery powered devices. We show WES running

on multiple version of Silicon, in multiple

hardware configurations including consumer,

commercial and industrial computers. A series of

tests is run to determine processing power per

watt, and some indicators of energy consumption

per functional operations as well.

Whitepaper

By: Lawrence Ricci

Abstract

Using Windows Embedded
Standard to Create a Battery
Powered Device

D I G I TA L T E C H N O L O G I E S F O R A B E T T E R W O R L D

w w w . e u r o t e c h . c o m



As 32 Bit RISC system increase in processing power,

the desktop x86 architectures are decreasing their

electrical power demands. Now, the battery

powered mobile device can be reasonably

engineered around either platform. But desktop

applications need some special consideration when

they are deployed in a true mobile device and

Window Embedded Standard is the OS to

accommodate these needs. Windows Embedded

Standard (WES for short) is more than just a

rebadging of the desktop OS. It is a different

environment, with new features specifically targeted

for low power, mobile and disconnected operation.

This paper and presentation will show how these

features can be productively employed.

For all of these, security starts with identity, and

spoofing the identify of a mobile device is a real threat.

We expect mobile devices to be applied outside a

secure perimeter, so we need to know if it is really the

specific device that ‘phones home’. Also, with a

mobile device, another type of ‘spoofing’ is possible- a

clone or twin device can be switched with the target

device, and a perhaps unknowing stooge could carry

the ‘evil twin’ into secure facility. Or, perhaps, the

Hard Drive can be lifted out of the mobile device and

placed in anther computer for analysis and attack.

Introduction

2

Figure 1- a comparison of "laptop" & "device" design criteria.

Desktop & Mobile are Different

Security

A mobile device could be lost, and the security of

the data contained can be compromised. A cell

phone might have a few dozen phone numbers. A

WES device might have the US National phone

directory. Clearly the liability is greater. One class of

data is especially critical- Biometrics. If an account

number or phone number is stolen, it can be

changed. If a biometric database is compromised,

we have a different sort of problem.

For “Data at Rest” security, WES offers Data

encryption at the disk, directory, or file level as EFS

(Encrypted File Systems) as part of the basic NTFS

file system. While WES stops short of Vista Level

“Bitlocker” security there are ways to build an

equivalent system.

A variety of third party ‘whole disk’ encryption

solutions are available, some of them validated to

FIP140-2. Some of these are packaged with the hard

drive technology.



3

Figure 2- Bad actors will try hard to penetrate security

Florida State University “Molecular Expressions” stumbled across this

message while examining the scribe lane on a Digital MicroVAX

computer. The text is Russian for the phrase: "VAX - when you care

enough to steal the very best". This joke reflects on the black-hat white-

hat rivalry of the 1970’s. Where do you think the technology is today?

Notice that good three factor security (what

you have- badge, who you are-biometric, what you

know- password) is not enough to combat this sort of

spoofing threat. A properly authenticated user could still

log onto a network via compromised device (e.g. with a

key-logger installed) and security could be breached. The

device itself (not just the software on the disk) needs to

be part of the secure path of data to and from the

network. This is best done with a hardware solution

such specified by TCG (Trusted Computer Group).

Hardware components like the Atmel TPM (Trusted

Platform Module) perform important functions- in

particular “Secure boot”, which is supported by 3rd party

full disk encryption file systems. The idea here is as the

bootstrap software is loaded, a hashcode of software

and device identity is generated that is essentially

unique. This hashcode is stored deep inside the module

and is unknown to even user or administrator. Only the

system knows what software it is supposed to boot, and

the software knows run on only that hardware.

The TPM module also offers a secure repository for

passwords and hashed passwords, keys and certificates.

Data – like a password- ‘at rest‘ in RAM or on disk sector

can be lifted using a commercial tool like WINHEX and

revealed. If they are in a disk sector unencrypted by the

basic NTFS (for example spooling, temp, swap or print)

they might be in clear text. But even if encrypted, by

using a fast off line computer to hash billions of clear text

strings until they ‘match the hash’, the password or key

can be revealed. The best way to keep critical key data

secure is to store it deep inside the silicon, where there

are tamper detection and response circuits to protect

data even from bad actors with what are called “national

assets”.

Even away from National Security applications, strong

data protection is often required. A case in point is High

Definition Media. Many mobile x86 devices are being

planned, and playback of HD Video is often one of the

target applications. Virtually all commercial HD Video

content is protected by strong DRM such as Sony Blu-Ray

of the user

technology, and there is an ongoing battle fought in the

labs and in the courts between content owners and those

who want to copy and distribute content without royalty.

So far, by use of smart and easily updated VM’s for security,

and legislation like , the HD

Content owners seem to be winning. For software built

into embedded devices that must cross borders, the contest

is not even close. Downloaded “Cracking” software that

can run on a PC is perhaps still a subject for extended

debate in perhaps a Norwegian court , but devices with

infringing software can be stopped, at the border, with a

simple injunction, causing a severe cash flow problem for

both the manufacturer and importer.

These DRM schemes typically require device authentication

from the media to the player to the computer and then to

the display device where the picture is imaged. Silicon

protected identity, like a TCG approved module, is

mandatory for such systems. WES, like Vista, can work with

such software and can be made complaint with the DMC-

1998. Microsoft is doing what it can to make Linux safe

from “Tivoization” .

WIPO copyright treaty, 1996

Other licenses may restrict this “No covered work shall be deemed part of an effective

technological measure under any applicable law fulfilling obligations under article 11 of the WIPO

copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting

circumvention of such measures.” GNU GENERAL PUBLIC LICENSE, Version 3, 29 June 2007

For this ‘community’ term perhaps the best reference is

http://www.vnunet.com/vnunet/news/2121179/norwegian-court-clears-dvd-jon

http://en.wikipedia.org/wiki/Tivoization

1

2

3

1

2

3



4

The designer of a Mobile WES device should

consider the issue of HMI carefully. Even with the

graphics power of the Atom chipset, fully supported

by out of the box drivers from Microsoft, the device

may constrain the size of the display suggesting

some HMI redesign. Certainly, the normal “XP”

desktop is available, and can be themed with

different colors and if desired skinned with

significant changes to graphics and function.

Anyone wishing to fully engineer a custom interface

for their device should take a good look at Siverlight.

Silverlight is targeted for what Microsoft calls RIA

(Rich Interactive Applications). Silverlight is

developed in Visual studio, under .NET 3.5 and has a

direct interface to databases and programming

languages in a single IDE. .NET 3.5 is one of the new

features available with WES and is not part of older

XP embedded.

But Silverlight is a browser based technology, and

this might not work for a mobile hand held device.

In this case, the preferred interface could be

Windows Presentation Foundation (WPF) WPF offers

all the features of Silverlight - embedded videos,

animation, scaleable vector images etc- but does it

all without the browser.

Finally, one more detail about mobile devices: they

tend to have a resistive touch screen, not a mouse

or track ball. This is a different interface- it has no

‘hover’ feature for example. Windows Mobile and

Windows CE have a convention to provide needed

function with tap and hold, tap and drag and double

tap actions on the screen, but these have to be built

into the touch screen driver, that are different for

each touch screen supplier and are not part of WES

out of the box. You need to build this driver

yourself, or get it from you OEM supplier. A word of

caution- this driver, if done improperly, can be a

resource and power hog. Use good low power,

interrupt driven design techniques to build it.

Networking for a true mobile device is different. A

laptop, while movable, typically operates from a fixed

location and maintains a link to a single WiFi access

point. A hand held WES device however might be

used by a person in motion (Say a worker with an

RFID reader/tablet in a warehouse) and might need

to ‘hop’ from one AP to another- while maintaining

session connectivity, perhaps securely.

Windows Communication Foundation (WCF) offers

this sort of flexibility. WCF, part of the .NET

Framework, is used to build applications that inter-

communicate. WCF is built into Vista, and can be

downloaded and installed by the OEM building a WCF

device.

WCF is Microsoft’s comprehensive solution to

communications, but in this pond Microsoft is not the

only big fish. Cisco has close to a monopoly on

access points, and their various standards (notable

CCX) also are a factor in the environment for an OEM

device. Fortunately, these communications

technologies are based on compatibility with XP/Vista

and are therefore generally plug and play driver

installs with a WES system. The OEM should be

cautious that for Mobile devices, vendor standards

may not be enough. There are strong industry and

government standards for Medical devices of

different types, DoD information, and various kinds of

secure (financial) transactions. Again, fortunately, all

of these were developed and proven with Windows

PCs devices so OEM adaptations to a WES device is

generally pretty easy.

All the answers, however, are not in the software. In

particular, the mobile device designer needs to

understand where his device fits in a communications

scenario. For example, laptops are almost always

USB Host. However a mobile device might be USB

Slave, or some mix of host and slave roles. This sort

of change might require BIOS adjustments.

HMI Networking



5

Power use, or more specifically energy consumption

per unit operation, is very critical for battery

powered devices. At the end of the day, what is

wanted is “Days of Use” at the minimum battery

cost and size. The measurement of Clockspeed or

MIPS is not a good indicators of a device ‘DOU’. The

measurement of power is not strictly related to

DOU. MIPS per Watt is some degree relevant, but

assumes a constant, continues use- rarely the case

for a mobile device. But what really counts is Watt

Seconds (ergs) per operation.

Mobile applications are interrupt and event driven.

For example, a mobile device might have a built in

RFID reader. Its battery life will likely be measured

not in hours, but in number of reads. If properly

designed, the device should consume almost no

power unless it is commanded to read a tag. Then,

it should spring to action, pulse the RF, read the

returning data, sort out false reads, apply some

business logic, and then pass the data to local or

remote databases, possibly initiating a network

connect to do so.

Design for optimal ergs per operation is, as you can

see, an integrated effort over hardware, OS and

application software. Further ergs/op is very

specific to the operations performed and the

networks employed. For example, a short SMS

might be send with great energy efficiency (nano-

ergs per byte) via CDMA or GPRS. A larger

document, say a email or graphics, might have its

highest efficiency (ergs per megabyte) when

transferred over WiFi. WES offers the applications

designer a platform to undertake such selective use

of networks based on the required bandwidth,

security and quality of service .

Out of the box, WES offers Advanced Configuration &

Power Interface (ACPI) which is the same as you

would get on a XP Pro Laptop. Built in and out of the

box you get basic functions like hibernate. Then, you

get the ability to exercise addition power

management from the applications level. ACPI level

power management is based on simple monitoring of

run time idle, as shown in the diagram (over page).

Power Power Management with ACPI

Term Definition

The procedure that a function driver uses—before the

driver powers down the device—to prepare the device

to wake itself.

A collective term for any of the device low-power

states (D1 through D3). D0 is the normal device

operating state.

A power IRP that the function driver sends to the

device stack to transition the device to D .x

A timer that tracks the time since a device was last

used. When the timer reaches the selected idle time-

out value, it expires and notifies the function driver to

start the power-down process.

The driver that controls the device’s power state and

decides when to change that state. Each device stack

has a single PPO, usually the stack’s function driver.

A collective term for any of the system low-power

states (S1 through S5), including standby, hibernate,

and so on. S0 is the normal system operating state.

A power IRP that is sent to the device stack to notify it

that the system is about to transition from S0 to S .x

A device waking itself when the system is in S0. This is

the runtime idle detection scenario.

A device waking itself and the system when the system

is in S .x

A feature that enables a function driver to ask the

parent driver to suspend an individual USB device or

function while the other devices or functions that are

connected to the same parent remain in their normal

operating state.

Conserving energy by powering down an idle device

while the system remains in its normal operating state.

USB selective

suspend

arm for wake

Dx

D IRPx

idle timer

power policy

owner (PPO)

Sx

S IRPx

Wake form S0

Wake form Sx

runtime idle

detection

4

Increasing System Power Efficiency through Driver Support for Runtime Idle Detection

(MSDN, April 23, 2008)

4



Device in D0

[Device in idle]

[Timer expired]
[Timer expired]

[Cancel succeeds]

[No]

[Yes]

[Device requires

power]

[Device requires power]

Start timer

Supports wake

Request Dx IRP

Power down

device

Arm device for

wake from S0

Request wait/wake

IRP

Cancel timerPower up and

disarm device

Request D0 IRP

Cancel wait/wake

IRP

6

WES 2009 has a new feature (HORM) Hibernate Once,

Resume Many. HORM lets a system start up very

quickly (nominally a second) to a previously created

hibernate file. This feature would, for example. Let an

automation system quickly jump into action after a

momentary power failure.

For some devices, the OEM should be ready to move

past basic ACPI level of power management by

integrating it into his application. The OEM or his board

supplier can extend the BIOS to provide an API to shift

both the CPU and even associated electronics into

lower power states. Interestingly, there is significant

room for power savings inside fleeting milliseconds of

what appears to us to be continuous operations. For

example, there are various power drains required for

each frame of a MPEG playback: one power level to

pull it off the disk, one to decode, one to fill the frame

buffer and then very low power (but with the screen

backlight left on) to wait for the next frame.

This variable power consumption between the frames

of an MPEG is actually visible on a high speed current

measuring oscilloscope.

Using energy is only half the story, it has to get into

the battery first. Lithium chemistry is dangerous,

and smart batteries are the norm. Controlling

battery charge requires access to I2C or SPI bus

interface, from the applications layer, to manage

charge and discharge process of the battery. Battery

management is a significant hardware/software

design challenge and integration with the OS is

fundamental to the success of any mobile device.

Extending Power Management

Battery Charge

Figure 3- Runtime Idle Detection

This basic ACPI function, included in WES and as used in laptops, is just

the starting point for power management of a mobile device. The

‘timer’ that paces ACPI is typically set far outside the interval that

characterizes the event drive operation of a real time device

Figure 4- Power Consumption = power, =

current, steady = voltage. MPEG-1 playback,

Linux OS is top, WES is bottom. Platform is Catalyst EC.

Yellow

Yellow

fuchsiaYellow

Yellow



WES marks a real paradigm shift in the way mobile

computing assets can be integrated in the enterprise.

Deployment is as important as device design. Anyone who

has had to install a software update, virus removal program or

push down a new price list or updated map database to five

thousand devices will understand the importance of scalability.

With WES efficient deployment can be built into the device.

For lightweight WES devices there is the Device Update Agent

(DUA). DUA is a lightweight, 30K, component to perform

system updates, update existing applications or application

databases, install new components, install new device drivers

and generally perform automated, remote or mobile device

management. DUA is stand alone; it can poll a Web server, a

network share or a local port for CD or USB drive to get its

update.

Today most enterprise mobile devices are deployed in a ‘star’

around some sort of gateway server which deals with

maintenance issues like software update, firewall and security,

often using third party tools. Since WES is very close to the

desktop “XP” it can be integrated more directly to the

enterprise, and the device designer needs to consider how he

wants his device applied, deployed and maintained. The in

place tools to maintain desktops (Microsoft or third party) are

an option.

So, for applications development, the programmer has, if he

wants, an API to resources like Active Directory, Calendars and

so forth. No separate database of names and addresses need

be maintained for the embedded devices, and file

synchronization facilities are available for ‘disconnected’

devices.

This means if the OEM and end user wish, the WES device

can dial up Microsoft System Update and scan for updates

and patches, just like a desktop or laptop today. But

realistically, when deployed as a mobile terminal, slot

machine, cash register or ATM, the OEM and the enterprise

will want more control over the interaction.

Enterprise Applications,

Maintenance and Administration

This is all available as part of the normal Microsoft enterprise

tools set.

Microsoft’s standard maintenance console: Windows Server

Update Services (WSUS) or Microsoft System Center

Configuration Manager (SCCM) can manage WES devices

alongside normal desktop and server systems. Stand-alone

‘disconnected’ devices may require a person to apply updates

from a transportable media, like a CD or USB fob.

Another maintenance tool is Watson. Watson is the feature

that asks you if you want to report application crash details to

Microsoft. An OEM or Enterprise with a complex mobile

application can deploy an OEM version of Watson to report

crash data directly to them. If the OEM they chooses to get

Microsoft involved with the fix, the enterprise or OEM have a

way to communicate detailed information.

Finally, part of an update strategy might be to prevent it from

happening! Many devices (such as medical equipment) must

be operated in a ‘approved’ configuration. WES includes

some write filters that can prevent updates to certain sections

of memory, making it impossible to install new applications

for example, while still allowing exchange of data.

Copyright ©, Eurotech, Inc, 2009.

All Rights Reserved. This document may not be used for

commercial gain without permission of Eurotech, Inc. Any

trademarks used within are the property of their respective

owners. This document contains technical descriptions that may

not be representative of Eurotech product or services.

Windows Embedded Standard offers new operating

system options for the embedded device designer.

Now he is free to truly design for the enterprise, for

the deployed application .

Summary

D I G I TA L T E C H N O L O G I E S F O R A B E T T E R W O R L D

w w w . e u r o t e c h . c o m




