Eurotech Group

Eurotech is a leading international technology group with headquarters in Italy and facilities throughout Europe, America and Asia. The Group's main focus is on the development of cutting-edge technologies that make our life better, safer, and more comfortable.

The fundamental assumption behind Eurotech's business strategy is the concept that as important technologies spread, they become increasingly integrated into our life, becoming nearly invisible.

Eurotech's role today is to support its customers in Sensors Network markets and to identify new customers in the emerging markets breaking traditional boundaries via innovation.

With this vision in mind, Eurotech has oriented its R&D activities to the key high-growth sectors, like pervasive computation. Their goal is to develop innovative, integrated solutions (software, hardware, middleware and support services) that offer the flexibility and scalability needed to capture new market opportunities and integrate them in the traditional markets.

Eurotech's strategy, which couples standard solutions with a flexibility that allows customization and innovation, has made them one of the world leaders in high technology for computer miniaturization.
Table of Contents

SOLUTIONS

- Industrial Scenario 7
- Temperature and humidity monitoring for Hospital/Biological Laboratory 7
- Maintenance and Telemetry 8

PRODUCTS

- ZigBee modules 9
- Wireless Sensor Network 12
- Mobile Computers 16
- Cellular Routing Modems 17
- Wearable Computers 18
A standard ZigBee™ or 802.15.4 is an excellent choice for many low power, low data rate wireless communication applications. However, is it really for everything? There are situations where 802.11 WLAN works very well for high data rate traffic. Similarly, there are applications that require long range and more battery life. ZigBee protocols are relatively light with respect to demands on code space (32-70 KB) and have a moderate range (10-100m). These make ZigBee a good choice for Industrial and Home Networking.

One of the big advantages of ZigBee is the “mesh” capability. Mesh networks allow messages to be passed from node to node such that if any of the nodes fail or drop out, the message can still reach its destination.
Enter the proprietary networks that operate in the ISM (Industrial, Scientific and Medical) bands. Applications such as remote temperature monitoring, pressure and actuation are many times best handled via ISM band. The range or reach of solutions using ISM band is much greater than what can be realized with ZigBee, Bluetooth or WLAN.

<table>
<thead>
<tr>
<th>FEATURES</th>
<th>IEEE 802.11b</th>
<th>Bluetooth</th>
<th>ZigBee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Profile</td>
<td>Hours</td>
<td>Days</td>
<td>Years</td>
</tr>
<tr>
<td>Complexity</td>
<td>Very Complex</td>
<td>Complex</td>
<td>Simple</td>
</tr>
<tr>
<td>Nodes/Master</td>
<td>32</td>
<td>7</td>
<td>64000</td>
</tr>
<tr>
<td>Latency</td>
<td>Enumeration up to 3 seconds</td>
<td>Enumeration up to 10 seconds</td>
<td>Enumeration 30ms</td>
</tr>
<tr>
<td>Range</td>
<td>100m</td>
<td>10m</td>
<td>10m–100m</td>
</tr>
<tr>
<td>Extendability</td>
<td>Roaming possible</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Data Rate</td>
<td>11 Mbps</td>
<td>1 Mbps</td>
<td>250 Kbps</td>
</tr>
<tr>
<td>Security</td>
<td>Authentication Service Set ID (SSID)</td>
<td>64 bit, 128 bit</td>
<td>128 bit AES and Application Layer user defined</td>
</tr>
</tbody>
</table>

Power consumption of ZigBee and ISM band is more in line with the expectations for remote monitoring of temperatures, pressures and actuation type data. A ZigBee node can be expected to survive about a year using a AA batteries. The reason for extended battery life on ISM band solutions is the ability of the designer to choose a duty cycle of the data and thus customize the solution to the situation. The worldwide accepted frequency for ZigBee/802.15.4 devices is 2.4GHz using DSSS (Direct Sequence Spread Spectrum) as modulation scheme. This frequency has shortened antennas and a lower overall system cost, for this reason it is a good choice for low cost and longer range industrial and home wireless network.

PROTOCOL STACK FEATURES

Power consumption of ZigBee and ISM band is more in line with the expectations for remote monitoring of temperatures, pressures and actuation type data. A ZigBee node can be expected to survive about a year using a AA batteries. The reason for extended battery life on ISM band solutions is the ability of the designer to choose a duty cycle of the data and thus customize the solution to the situation. The worldwide accepted frequency for ZigBee/802.15.4 devices is 2.4GHz using DSSS (Direct Sequence Spread Spectrum) as modulation scheme. This frequency has shortened antennas and a lower overall system cost, for this reason it is a good choice for low cost and longer range industrial and home wireless network.

PROTOCOL STACK FEATURES

Power consumption of ZigBee and ISM band is more in line with the expectations for remote monitoring of temperatures, pressures and actuation type data. A ZigBee node can be expected to survive about a year using a AA batteries. The reason for extended battery life on ISM band solutions is the ability of the designer to choose a duty cycle of the data and thus customize the solution to the situation. The worldwide accepted frequency for ZigBee/802.15.4 devices is 2.4GHz using DSSS (Direct Sequence Spread Spectrum) as modulation scheme. This frequency has shortened antennas and a lower overall system cost, for this reason it is a good choice for low cost and longer range industrial and home wireless network.
In industrial applications, a ZigBee sensor network may be used for monitoring physical parameters, including temperature, humidity, pressure, gas detection. A mesh sensor network can be created on site and the information may be used for distribution I/O control (without a central PLC or Computer) and/or for remote monitoring.

Temperature and humidity monitoring for Hospital/Biological Laboratory

The ZED with PT100 probe placed in the refrigerator and ZRouter is a non intrusive solution for temperature/humidity monitoring. ZED datalogger and Zypad/PC software modules provide historical data, graphical and alarming capabilities. Once implemented, the ZigBee system can assure hospital staff that products are safely stored in monitored refrigerators.
From Field to SOA (Service Oriented Architecture). A wireless sensor network is the best way to interface the analog and digital existing sensors to a gateway and then to a remote or local server/s that implement the SOA. Using ZED-XX-YYY sensors and ZRouter it is easy to create a PAN (Personal Area Network) where switch, light, temperature sensors, humidity sensors, gas/water meters, electro valves, etc “talk the same language”: ZigBee. IPS100 may be used as a local terminal and Zypad represents the best tool for maintenance. ZyWAN or ZTube collects and preprocesses the information and communicates with the local or remote server, CLU, where service applications run.
nZB
IEEE 802.15.4/ZigBee Module

PN
nZB-01 with internal antenna
nZB-02 with external antenna

Application
Industrial and home automation, Sensor network, Localization, Active RFID

Very Low Power
Operating voltage 2.3-3.4V – Average current less than 17μA

Frequency Range
2400-2485 MHz – 16 channels

Max Output Power
+3dBm

Electrical Interface
2 UART, 1 IIC Bus (SCL, SDA), 5 GPIO, 6 channel ADC

Protocol
IEEE 802.15.4 / ZigBee Stack

Certification
FCC/CE Mark

Dimensions
Maximum 24x11.8mm h 2.3mm

Operating Temp
-45/+85°C

Overview
This module is the right response at any low-data-rate, monitoring, control or automation application that requires long battery life and wireless connectivity.

This module provides solutions for wireless sensing and control applications that require networks that support simple point-to-point solutions, to complete ZigBee compliant mesh networks.

It is a stand-alone module with an MCU that is in-field programmable and with many pins configurable for a flexible and adaptable use to every field.

Target Applications
- Industrial automation
- Remote monitoring and control
- Domotic
- Remote sensors monitoring
- Medical equipment
- Active RFID
- Localization

Mechanical dimensions [mm]

Mechanical drawing of nZB-01

Mechanical drawing of nZB-02
nZB Development Kit

<table>
<thead>
<tr>
<th>Application</th>
<th>Development tool for Industrial and home automation, Sensor network, Localization, Active RFID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>EVB with USB or 2 AAA battery, Bread board with 2 AAA battery</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>2400-2485 MHz – 16 channels</td>
</tr>
<tr>
<td>Max Output Power</td>
<td>+3dBm</td>
</tr>
<tr>
<td>Electrical Interface</td>
<td>2 UART, 1 IIC Bus (SCL, SDA), 5 GPIO, 6 channel ADC</td>
</tr>
<tr>
<td>Protocol</td>
<td>IEEE 802.15.4 / ZigBee Stack</td>
</tr>
<tr>
<td>Certification</td>
<td>FCC/CE Mark</td>
</tr>
<tr>
<td>Boards</td>
<td>N.1 Evaluation board with BDM interface, N.1 Bread board, N.5 nZB modules, N.1 StickBee</td>
</tr>
<tr>
<td>Operating Temp</td>
<td>-45/+85°C</td>
</tr>
</tbody>
</table>

Overview

NZB Evaluation Board is a simple portable board which can either be used to test potentialities of NZB module or developing/debugging software for it. NZB Evaluation Board includes a practical on board USB BDM Programmer / Debugger which allows to Program / Debug the on board NZB module or other external HCS08 devices through the BDM connector.

In portable applications of NZB module the board can be battery powered by two common 1.5V AAA batteries. Different ways to supply the board, the programmer/debugger or the on board NZB module are given by either the two mini USB connectors of programmer/debugger module or USB serial converter or the external supply connector.

The BDM Programmer / Debugger based on a Freescale MCU provides a low speed USB 2.0 compatible interface and the inherent USB connector provides plug and play functionality. The firmware programmed on this MCU provides a transparent connection between a computer running CodeWarrior Development Studio for HCS08 version 5.0 to a Freescale HCS08 microcontroller via the microcontrollers BKGD pin. Debugger and software tools can communicate with the tag including downloading of user code into the microcontroller's on-chip flash.

Programming and debugger functions are made possible by the HCS08 microcontroller’s Background Debug Controller (BDC) and In-Circuit Emulator (ICE) Debug (DBG) modules. The BKGD line provides a single-wire background debug interface to the on-chip BDC and ICE Debug modules. Even if this interface is provided to the on board target, the BDM port can also be used to interface the programmer/debugger with an external target. For the Normal Mode configuration settings of the Development Board Jumpers, to Program and Debug either the on board NZB module or other HCS08 external targets (including external NZB modules) through the BDM connector CN6, please refer to the NZB Evaluation Board User Manual.
Overview

WL-2.4 is a wireless, low power, low voltage, battery operated sensor. Power is supplied by one CR2450 coin cell. In a star topology network, battery may last for years with transmission rates of about one packet per minute. Typical mean battery drain is about 10 μA (but instantaneous current may rise up to 20 mA during reception). Though external flash requires at least 2.7 V radio is capable to operate down to 2.1 V. Transmission robustness is assured by 802.15.4 physical and MAC layers. WL-2.4 may be used in home automation applications and everywhere a wired link is not feasible. It may operate as stand-alone device or be interfaced to a PC by means of a USB adapter. It may also be interfaced to other boards through an asynchronous serial interface in order to provide low range wireless connectivity. More complex, multihop network topologies are possible with a battery of greater capacity. The module may be used with TinyOS (open source) www.tinyos.net.
ZStick
USB/ZigBee stick

<table>
<thead>
<tr>
<th>PN</th>
<th>ZStick</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Coordinator for ZigBee or IEEE 802.15.4 Network from USB</td>
</tr>
<tr>
<td>Power</td>
<td>2400-2485 MHz – 16 channels</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>+3dBm</td>
</tr>
<tr>
<td>Max Output Power</td>
<td>IEEE 802.15.4 / ZigBee Stack</td>
</tr>
<tr>
<td>Protocol</td>
<td>FCC/CE Mark</td>
</tr>
<tr>
<td>Certification</td>
<td>ZTC protocol</td>
</tr>
<tr>
<td>PC Interface</td>
<td>-45/+85°C</td>
</tr>
<tr>
<td>Operating Temp</td>
<td></td>
</tr>
</tbody>
</table>
ZRouter

Router for ZigBee mesh network

| PN | ZRouter-01 with internal antenna |
| PN | ZRouter-02 with external antenna |

Application	Router for ZigBee or IEEE 802.15.4 Network
Frequency Range	2400-2485 MHz – 16 channels
Max Output Power	+3dBm
Protocol	IEEE 802.15.4 / ZigBee Stack
Certification	FCC/CE Mark
PC Interface	ZTC protocol
Operating Temp	-45/+85°C

Application

- ZigBee Coordinator (FFD)
- ZigBee Router (FFD)
- ZigBee End Device (RFD or FFD)
- Mesh Link
- Star Link

Mechanical dimensions [mm]

(Frontal View)

- 97.5mm

(Top View)

- 102.8mm

(Side View)

- 111.0mm
Wireless Sensor Network

ZED: multifunction ZigBee end device family with rechargeable battery

- **PN**: ZED-XX-YYY
- **XX**: 01 internal antenna – 02 external antenna
- **YYY**: 001 ZigBee data logger with 24bit A/D converter
- **100**: ZigBee Temperature and humidity sensor - only with internal antenna (XX=01)
- **120**: ZigBee single switch – only with internal antenna (XX=01)
- **121**: ZigBee double switch – only with internal antenna (XX=01)

Application
- Industrial and Home Automation: ZigBee End Device

Sensor
- ZED-XX-001 is provide with a connector for PT100, Temperature and Humidity interface, Gas detector, Differential and absolute pressure transducer, etc.

Power
- Long Life Internal Rechargeable Battery
- 2400-2485 MHz – 16 channels

Memory
- 1 MB internal memory
- On board real time clock

Antenna
- +3dBm
- Integrated or External

Wireless Protocol
- ZigBee 1.1 – Mesh network

Certification
- FCC/CE Mark

Operating Temp
- -45/+85°C

Mechanical dimensions [mm]

![Mechanical drawing of ZED-01-YY](image1.png)

![Mechanical drawing of ZED-02-001](image2.png)
Overview

ModBee2400 is a Modbus bridge over ZigBee radio protocol stack meant as a Modbus wire replacement. The network comprises one ZC (ZigBee Coordinator) and one or more ZR (ZigBee Router).

The StickBee (a USB Stick) acts as the ZC in the ZigBee network and has to be connected to the Modbus master. The StickBee is itself a Modbus slave allowing either Modbus and ZigBee configuration.

A remote trunk consists of a ZR and one or more Modbus slaves attached to a RS485 bus.

Modbus slave addresses must be unique through the whole network. It is not possible to have more than one Modbus slave with the same address on different remote trunks.

Either the ZC and ZRs are aware of master/slave (or client/server) nature of Modbus protocol.

When a Modbus serial PDU (Protocol Data Unit) is received by the Modbus half of the StickBee, it is encapsulated in a ZigBee ASDU (Application Service Data Unit) and sent through the network to the ZR on which branch is attached the addressed Modbus slave. To do so the Modbus half of the StickBee analyzes the address field of the serial PDU and tries to resolve this in a ZR network address. Then the ZigBee half of the StickBee waits to receive a reply from the addressed ZR. Upon receipt of this reply the ZigBee half of the StickBee removes the serial PDU from the ZigBee ASDU and transmits it on the serial line.

While waiting for the reply the StickBee stops listening to the serial line thus discarding any serial PDU that the master might have transmitted.

While aiming to be as transparent as possible the ZigBee network may introduce latencies that must be understood before setting the response timeout and poll period of the Modbus master.

Sequence charts are provided in this document to help in determining safe values for these parameters.

Mechanical dimensions [mm]
ZTube is a localization and tracking system with internal mass storage and TCP/IP remote communication (GPRS). The device may be used alone or with a set of ZigBee sensors (ZED-XX-YYY) for remote parameter monitoring (i.e. temperature) or identification (active RFID TAG). ZProbe is easy to install to any means of transportation and doesn't require specific software for its use. You can track and record transportation anywhere using an “S-TUBE” web server or you can read the tracking at the destination using a java script, available inside the ZTube mass storage.

Target applications

- Industrial automation
- Domotic
- Medical equipment
- Localization
- Remote monitoring and control
- Remote sensors monitoring
- Logistics
- Wearable system

Certifications

CE This device complies with the EU directives 99/05/CE, 73/23/CEE, 2004/108/CE, 2004/104/CE (Automotive)
FCC This device complies with Part 15 of the FCC Rules.

Block diagram

An internal java script for tracking by Google map.

Physical Dimension and Labeling
ZyWAN

Application
- Cellular Routing Modem
- AVL (Automatic Vehicle Locating)
- Telemetry, Command & Control
- Mobile Computing

Features
- PXA270 520 MHz XScale Processor;
- up to 64 MB of soldered SDRAM / 64 MB Flash;
- 2x RS232 and 1x RS232/422/485 selectable;
- Serial MMI or Telnet;
- 2x RJ-45 10/100BaseT Ethernet;
- Dual USB 1.1 ports
- Standard DB15 RGB
- Panel Mount
- GSM/GPRS, 802.11 b, 802.15.4 ZigBee
- GPS with 12 channel continuous tracking receiver
- 238mm x 137mm x 65mm (W x L x H)
- 10 – 30V DC
- 0/+50°C

VGA / Touchscreen
- Standard DB15 RGB

Form Factor
- Panel Mount

Wireless Connections
- GSM/GPRS, 802.11 b, 802.15.4 ZigBee

Positioning
- GPS with 12 channel continuous tracking receiver

Dimensions
- 238mm x 137mm x 65mm (W x L x H)

Power Supply
- 10 – 30V DC

Operating Temp
- 0/+50°C
Zypad WL1120

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Professional Data Acquisition and Management</td>
</tr>
<tr>
<td>Display</td>
<td>3.5” TFT 320x240 with touch screen</td>
</tr>
<tr>
<td>Memory</td>
<td>128 MB RAM/128 MB FLASH – Mini STDIO Memory Expansion</td>
</tr>
<tr>
<td>Battery Life</td>
<td>Up to 8hrs (*)</td>
</tr>
<tr>
<td>Positioning</td>
<td>12 channel GPS receiver</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>Wi-Fi 802.11 b/g; Bluetooth class 2 (optional ZigBee version)</td>
</tr>
<tr>
<td>Standards</td>
<td>FCC/CE EMC EN55022-024-CSA</td>
</tr>
<tr>
<td>Weight</td>
<td>290 g. with battery and wrist band</td>
</tr>
<tr>
<td>Operating Temp</td>
<td>-10/+50°C</td>
</tr>
</tbody>
</table>

(*) depends on features activated